治疗肺癌新技术:靶向肿瘤衍生外泌体免疫治疗肺癌(下)
调节性T细胞与调节性B细胞
TEX通过TGF-β和IL-10依赖性机制促进Treg和Breg增殖,从而增加它们对细胞凋亡的抗性。肿瘤衍生外泌体诱导CD4+CD25阴性T细胞转化为CD4+CD25高FOXP3+ Treg细胞。
TEX含有表面CD39和CD73,直接将膜束缚CD73传递至CD39+细胞,并通过产生胞外腺苷负调节T细胞功能,从而降低局部免疫力。TEX还诱导常规CD4+T (Tconv)表面上CD69丢失,导致其功能下降。
调节性B细胞是介导免疫耐受的免疫抑制性B细胞亚群。Breg产生IL-10,IL-35,TGF-β,PD-L1和IL-21等分子,并诱导Treg产生,从而通过抑制促炎细胞因子预防免疫病理事件。
TEX在肺癌EMT中的作用
上皮-间质转化(EMT)是上皮细胞获取间充质细胞特性的过程。在此过程中,上皮细胞失去了细胞极性和粘附特性,获取运动特性。
这使得上皮细胞迁移至允许转移和肿瘤进展的远端部位。EMT在为癌细胞提供干细胞方面也很重要。分离自晚期肺癌患者血清的TEX含有高水平波形蛋白,TEX可以诱导受体人支气管上皮细胞中的EMT。
肺癌中,波形蛋白通过调节VAV2–Rac1通路,修饰粘着斑激酶活性来改变癌细胞粘附作用。miR-23a介导TGF-β诱导的A549细胞EMT。
TEX在肺癌血管生成中的作用
血管生成对肿瘤生长和转移至关重要,受不同机制和血管生成因子调节。外泌体在血管生成中起关键作用。
在显微镜下,TEX可以抑制肿瘤的生长
缺氧是肿瘤微环境的标志之一,TEX在缺氧条件下的变化使得它们能够通过血管生成缓解肿瘤微环境的应激状态。TEX相关miR-23a摄取能够靶向脯氨酰羟化酶1和2(PHD1和2),导致缺氧诱导因子-1α累积以及血管生成增强。
金属蛋白酶组织抑制剂(TIMP)-1是强烈支持肺癌进展的因子,在PI3K/Akt/HIF-1通路控制下,TIMP-1过度表达诱导了肺腺癌细胞及其衍生外泌体中致瘤性miR-210表达。
反之,这些细胞释放的TEX下调EC中的Ephrin A3并促进血管生成。
肺癌转移与TEX
转移所需的主要步骤是形成转移前生态位,转移部位不是随机的,而是在转移开始之前,肿瘤细胞被修饰后选择的。相反,转移生态位在CTC到达时开始并形成。TEX在转移前生态位形成和转移过程中发挥重要调节作用。
黑色素瘤衍生TEX在原发性肿瘤形成和肺转移中很重要。另外,TEX还可以将癌基因MET从黑色素瘤细胞转移至BM祖细胞,从而促进转移。外泌体靶细胞选择通过它们表面黏附分子确定。
肿瘤衍生外泌体表面特异性整合素谱直接将它们引导至特定器官,从而驱动转移性亲器官性。骨骼是导致溶骨性病变的NSCLC的常见转移部位。肺是许多转移性原发肿瘤的共同靶点,这种组织特异性转移背后的确切分子机制尚未完全了解。
TEX作为生物标志物及肺癌治疗
生物标志物作为机体特定生理或生物状态指标,可用于区分正常或致病状态以及治疗反应。生物标志物可能是癌症进展,复发风险或治疗疗效的预后和预测性标志物。大量研究表明外泌体可能是肺癌“液体活检”的生物标志物。
TEX标志物可能较传统活检方法更具灵敏度和特异性。研究人员检测了肺癌衍生外泌体的标志物,如蛋白质和非编码RNA。
生物标志物可以起到参考的作用
一项以276例NSCLC患者血浆外泌体膜上附着的49种蛋白质为研究对象的分析表明,某些蛋白,如NY-ESO-1可能与存活显着相关。NSCLC患者血清外泌体miRNA微阵列分析表明,肺癌复发的患者miR-21和miR-4257显着上调。
肺癌患者中两种肿瘤抑制相关miRNA(即miR-51和miR-373)外显子表达降低,并且这种降低与预后不良有关。
另外,也有研究报道了其他可作为肺癌治疗反应标志物的外泌体miRNA,如miR-208a和miR-1246分别与p21和DR5 mRNA结合以促进肿瘤生长和对放疗的抗性。CD171和CD151以及tetra-spanin 8也被认为是NSCLC的潜在诊断生物标志物。
外泌体是向目标器官传递药物和核酸的合适媒介,其在癌症治疗中具有很大的潜力。
例如,外泌体运行于肿瘤特异性抗原,也可以作为抗癌疫苗。由于TEX吸收具有亲器官性,并通过整联蛋白介导的信号传导发挥作用,因此通过诱饵肽阻断整联蛋白可能是抑制外泌体融合和摄取,从而阻断肿瘤进展的良好策略。
最新肺癌免疫治疗方法之一依赖于阻断T细胞活化的负调节物,如PD-1和PD-L1以及肿瘤微环境中的炎性信号。
另一种方法,如阻断外泌体释放或抑制肿瘤微环境中外泌体介导的细胞串扰可能适合抑制有利肿瘤微环境的发展。另一方面,外泌体可以调节肿瘤微环境内的抗炎信号,这可以有效增强肺癌免疫治疗疗效。
总之,外泌体可能用于癌症诊断和治疗。由于其独特的生物学特性,如特异性靶向,小尺寸,穿梭信号传导和生物分子,以及穿越生物屏障的能力;外泌体可作为诊断性生物标志物,用于药物传递以及肿瘤免疫治疗。
然而,仍需进一步研究来解决外泌体生物学局限性,以便将基于外泌体的技术转化为临床应用。